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Optical properties of short pitch cholesteric liquid crystals

S. PONTI*, M. BECCHI, C. OLDANO, P. TAVERNA and L. TROSSI

Dipartimento di Fisica del Politecnico di Torino and Istituto Nazionale di Fisica
della Materia, C.so Duca degli Abruzzi 24, 10129 Torino, Italy

(Received 7 August 2000; in � nal form 26 September 2000; accepted 11 October 2000 )

The optical properties of short pitch cholesteric liquid crystals are theoretically analysed in
the framework of an eŒective medium theory. It is shown that such properties are well
described by a very simple homogeneous model, de� ned by an eŒective permittivity tensor eÄ
having uniaxial symmetry, that is expanded in a power series of the ratio p/l0 between the
helix pitch and the light wavelength. The linear term is identically zero. This fact gives short
pitch cholesterics very unusual properties for their optical activity, which is related to the
scaling terms as ( p/l0 )m, with m odd and greater than 1. Some problems related to the
presence of these terms and concerning boundary eŒects are discussed but not fully resolved.
The limits of validity of the diŒerent approximations, obtained by considering only a limited
number of terms, are also found.

1. Introduction The aims of the present research are: (i) to apply the
Bloch wave method [5, 6], to a particularly simpleCholesteric liquid crystals (LCs) are probably the

most interesting periodic structure found in optics. They periodic structure (the existence of analytical solutions
for the axial propagation of light in cholesteric LCs willhave been extensively studied during the last century.

The reasons for such interest are historical, theoretical allow us better to test the validity of the method); (ii) to
explore the optical properties of short pitch cholestericand practical. It is well known that the history of LCs

began with the discovery, in 1888, of a cholesteric ester LCs for any direction of the light beam, on the basis of
expressions as simple as possible; and (iii) to make ain its cholesteric phase [1]. It is less widely known that

before this discovery a cholesteric-like structure had contribution to the solution of some unresolved problems
concerning basic optics related to the boundary-typebeen arti� cially made by Reusch [2], by superposing

identical thin mica sheets, each one rotated by a small eŒect, that have been described in the cited references.
angle with respect to the preceding one. This fact demon-
strates that the interest in cholesteric-like structures 2. The models
is not restricted to LC physics. Over the last few Let us consider a locally biaxial cholesteric with the
decades, any property of a cholesteric-like system has principal 3-axis parallel everywhere to the z axis of a
been the object of intense theoretical and experimental cartesian frame, while the other two axes are rotating
research, such that now no new optical properties are uniformly along z. The optical properties of the medium
expected to be found. However, the optical properties are fully de� ned by the relative dielectric tensor
of cholesteric samples having a pitch smaller than the
light wavelength have received attention only in recent
years [3–6], and in the framework of research con- e(z) 5 Ae

m
0 0

0 e
m

0

0 0 e3
B1

ea
2Acos (2w) sin (2w) 0

sin (2w) Õ cos (2w) 0

0 0 0Bcerning the optics of crystals. In particular, new methods
have been developed to � nd the eŒective dielectric tensor
eÄ of the homogeneous (macroscopic) model for short (1)
pitch periodic liquid crystals, by assuming their local

where e
m

5 (e1 1 e2 )/2, ea 5 (e1 Õ e2 ), w 5 qz 1 w0 , q 5 2p/p,permittivity tensor � eld e(r). Such a periodic tensor
and p is the helix pitch. Equation (1) de� nes the meso-function e(r) constitutes a mesoscopic model for the
scopic model of the medium. The eŒective dielectriccrystal, where its molecular (microscopic) structure is
tensor eÄ of its homogeneous model is found by the Blochignored.
wave method [5, 6]. As a starting point, we consider
the normal modes for the electromagnetic � eld within*Author for correspondence; e-mail: ponti@polito.it
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592 S. Ponti et al.

the periodic medium. These are Bloch waves, which can to eÄ (n) is given in general by the terms with N 5 2, i.e.
by the double scattering (two-photon scattering) . Withinbe written as a superposition of plane waves by setting
this approximation, equation (7) assumes the simple

E(r) 5 �
2

m= Õ 2

E
m

exp i(k 1 2mqzÃ ) ¯ r (2 ) form

eÄ (n) 5 eÅ 1 e
Õ 1G1 (n)e1 1 e1G

Õ 1 (n)e
Õ 1 . (8)

and similar expressions can be written for the other � eld
A further simpli� cation is obtained by expanding G

m
asvectors. The eŒective permittivity eÄ of the homogeneous

a power series of the small parameter p/l0 , since onlymodel is implicitly de� ned by setting D0 5 e0 eÄ E0 , i.e.
the � rst terms of such an expansion are expected to giveby only considering the plane wave of order zero, that
a non-negligible contribution to eÄ (n). In the followingde� nes the macroscopic � eld.
we consider a homogeneous model where only the termsThe eŒective tensor eÄ is expressed as a function of the
up to ( p/l0 )3 are considered. Equation (8) now gives:Fourier components of the periodic tensor � eld e(z),

which for cholesterics reduce to:
eÄ (n) 5 eÅ 1 A p

l0
B2

eÄ (2) 1 A p

l0
B3

eÄ (3) 1 OA p

l0
B4

(9)

wheree0 5 Ae
m

0 0

0 e
m

0

0 0 e3
B;

e Ô 1 5
ea
4A1 +i 0

+i Õ 1 0

0 0 0Bexp (Ô 2iw0 ).

(3 )
eÄ (2) 5 aA1 0 0

0 1 0

0 0 0B; eÄ (3) 5 an
zA0 i 0

Õ i 0 0

0 0 0B;

a 5
e2
a

32e3
(2e3 Õ n2

x
Õ n2

y
)

(10)

The zeroth order component e0 is the space average eÅ of
and n

x
, n

y
, n

z
are the components of n. The eŒectivee(z) and constitutes a � rst rough approximation for eÄ .

homogeneous medium is uniaxial, with the symmetryThe other approximations are obtained by adding eÅ
axis coincident with the helix axis of the periodic structure,terms having the general structure:
and the n-independent component is given by:

e
m1

G
Õ m1

e
m2

G
Õ (m1+m2)

¼ G
Õ (m1+…+mN Õ 1 )

e
mN

(4 )

where

eÄ (0 ) 5 AeÄ o 0 0

0 eÄ o 0

0 0 eÄ e
B; (11)

G
m 5

v

c
[(k 1 2mqzÃ )21 Õ (k 1 2mqzÃ ) (k 1 2mqzÃ ) Õ eÅ ] Õ 1.

where(5 )

The subscripts m1 , … , m
N

run over Õ 1 and 1 1, 1 is the
eÄ o 5 e

m
1

e2
a

16 A p
l0
B2

; eÄ e 5 e3 . (12)
3 Ö 3 identity matrix, (k 1 2mqzÃ ) (k 1 2mqzÃ ) is a dyadic
product, and the following relations are satis� ed:

The n-dependent component of eÄ (2) becomes important
if eÄ (0 ) de� nes an isotropic medium, i.e. if eÄ e 5 eÄ o , becausem1 1 ¼ 1 m

N
5 0, �

N ¾

n=1

m
n Þ 0 N ¾ < N. (6 )

in this case it gives a small anisotropy to the medium.
This condition is never met by the N* phase, whereThe terms given by equation (4) can be interpreted as
e2 e3 Þ e1 .the eŒect of the multiple scattering within the periodic

For a real e(z), the term scaling as ( p/l0 )3 is purelystructure, and equation (6) states that only the forward
imaginary, and gives the eÄ (n) an hermitian part thatscattering with multiplicity N > 2 gives a contribution
de� nes the optical activity of the medium.to eÄ . The formal expression of eÄ can be written as:

3. Eigenwaves for the electromagnetic � eld: plane wave
eÄ 5 eÅ 1 �

2

N=2
�
m1

¼ �
mN Õ 1

e
m1

G
Õ m1

e
m2

G
Õ (m1+m2 )

¼
solutions

The eigenmodes for the electromagnetic � eld in the
Ö G

Õ (m1+…+mN Õ 1)
e
Õ (m1+…+mN Õ 1)

. (7 )
eŒective homogeneous medium have the simple form of
plane waves. However, the dependence of eÄ (n) on n givesThe tensor eÄ explicitly depends on k through the matrices

G
m

, as shown by equation (5), i.e. eÄ 5 eÄ (n), where n 5 k/k0 a Fresnel equation that is no longer biquadratic : for any
given direction nÃ , the equation has more than two planeis the normalized wave vector and k0 5 2p/l0 is the light

wave vector in free space. The dominant contribution wave solutions, with diŒerent values of |n|. In expansion
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593Optical properties of short pitch cholesterics

(9), eÄ (n) contains powers of n up to n3, and a Fresnel identical equations are found for the two waves having
polarization parallel to the plane (nÃ , zÃ ), with the quantityequation of the � fth degree in n2 is expected. To � nd

out the � ve independent solutions, it is convenient to gÄ o substituted by gÄ o cos2 h 1 gÄ e sin2 h. In conclusion, only
two solutions are physically meaningful. They can beconsider the displacement vector D, which is orthogonal

to nÃ , instead of the vector E. For plane harmonic waves, obtained more easily by considering the terms depending
on ( p/l0 ) as perturbing terms in the equation that de� nesthe Maxwell equations can be written,
eÄ (n), equation (9). The Fresnel equation is biquadratic ,

n Ö [n Ö (e Õ 1D)] 5 Õ D. (13)
and gives the zeroth order solutions n(0)

1 and n(0)
2 . Each

Since the helix axis z is a symmetry axis of eÄ (n), it is not one of these solutions, say n(0)
i

, is now inserted into the
restrictive to assume that the vector nÃ is contained in expressions for the matrices G Ô 1 (n), equation (5), thus
the plane ( y, z). With such an assumption, equation (13) again obtaining a biquadratic Fresnel equation. Its root
can be written as: closest to n(0)

i
is assumed to be the � rst order solution

n(1)
i

. The next approximation can be obtained by
inserting n(1)

i
in the expression of G

Ô 1 (n), but in our caseGa11D
x
1 a12 D

y ¾ 5 0

a21D
x
1 a22 D

y ¾
5 0

(14)
this is unnecessary because the second order corrections
are of the order of ( p/l0 )4. This perturbation–iteration

where the axis y ¾ is orthogonal to the plane (xÃ , nÃ ) and
procedure automatically selects the physical solutions,

such that xÃ , yÃ ¾ , nÃ de� ne a right-handed cartesian frame.
and seems, therefore, more appropriate to � nding out

The coe� cients a
ij

are
eÄ (n). The matrices G

m
(n) are contained in terms which

act indeed as perturbing terms.
A similar iteration procedure has been used to � nd

the transmission and the re� ection coe� cients at the

a11 5 gÄ o 1 bn2 ( p/l0 )2 sin2 h Õ 1/n2 ;

a22 5 (gÄ o cos2 h 1 gÄ e sin2 h)

1 bn2 ( p/l0 )2 sin2 h cos2 h Õ 1/n2 ;

a12 5 Õ a21 5 ibn( p/l0 )3 (2e3 Õ n2 sin2 h) cos2 h

(15)
boundaries of the cholesteric sample, where the tan-
gential component of n, instead of the direction nÃ , is the
known quantity and dictated by the phase matching

where h is the angle (nÃ , zÃ ) and condition.
Finally we observe that the terms of eÄ (n) scaling

as ( p/l0 )3 are related to the optical activity of the
medium. In fact, in the presence of such terms the eigen-

gÄ o 5 eÄ Õ 1
o 5 e Õ 1

m
Õ

e2
a

16e2
m
A p

l0
B2

1 OA p

l0
B4

;

gÄ e 5 eÄ Õ 1
e 5 e Õ 1

3 ; b 5
1

32e3

e2
a

e2
m

.

(16)
waves become elliptically polarized, as clearly shown by
equations (14–16).

Setting the determinant of the coe� cients a
ij

to zero, 4. Optical activity and its scaling law
one indeed obtains a Fresnel equation of the � fth degree The cholesteric phase can be obtained only with
in the unknown n2. To discuss the structure and the chiral compounds that are optically active even in their
meaning of its solutions, it is convenient � rst to neglect isotropic phase. This fact implies the presence of an
the term scaling as ( p/l0 )3 in the expression of eÄ (n), thus imaginary and hermitian part in the local dielectric
obtaining an equation system where the oŒ-diagonal tensor e(z). However, the contribution to the optical
elements a12 , a21 are identically zero. The eigenvalue activity coming from the helical arrangement of the
equation is now of the fourth degree, and its four roots molecules in the N* phase is generally many orders of
correspond to four linearly polarized waves, with polar- magnitude greater than the contribution arising from
ization planes parallel or orthogonal to the plane (nÃ , zÃ ). the chirality of the constituent molecules. For lossless
The wave vector of the last ones satis� es the biquadratic media, the tensor e(z) can therefore be assumed as real.
equation A cholesteric sample gives uniform or quasi-uniform

rotation of the polarization plane of linearly polarizedgÄ o 1 b( p/l0 )2 sin2 hn2 Õ 1/n2 5 0 (17)
light propagating along the helix axis (axial propagation) ,

whose roots are: in a p-range from zero to nearly l0 /Dn, where Dn
is the local optical anisotropy. The rotatory power,n2

1 5 gÄ Õ 1
o Õ b( p/l0 )2 sin2 hgÄ Õ 3

o 1 O( p/l0 )4

n2
2 Õ gÄ o ( p/l0 ) Õ 2 (b sin2 h) Õ 1.

(18) i.e. the optical rotation per unit length y/d, is equal to
(k1 Õ k2 )/2, where k1 and k2 are the wave vectors of the
eigenmodes for axial propagation, whose polarizationFor ( p/l0 ) 1, the eŒective refractive indices are n1~ Ó eÄ o

and n2 , with |n2 | 1. This last solution is physically states are nearly circular (except within the Bragg band;
however a su� ciently thin sample gives optical rotationmeaningless, because its wave vector is outside the limits

of validity of the eŒective medium theory. Formally even in this band). The dependence of y/d on p and l0
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594 S. Ponti et al.

is given by the de Vries equation [7] exact analytical expressions have been known for axial
propagation since 1951 [7]. We recall that the de Vries
equation gives an approximate expression of y/d, where

y/d 5
ko
32 A p

l0
B3 e2

a
[( p/l0 )2 e

m
Õ 1]

. (19)
only the term scaling as e2

a is considered. This term
strictly corresponds to two-photon scattering, because
the multiple scattering with multiplicity N gives termsThe dependence of y/d on p is complicated, but simpli� es

in the short pitch limit, where n1 Õ n2 scales as ( p/l0 )3 scaling as eNa in the expression of eÄ (n). Figure 1 gives the
rotatory power y/d as a function of the normalized pitchand y/d ; (k1 Õ k2 )/2 scales as p3 /l4

0 .
A scaling law of the type p3 /l4

0 is quite unusual. In p/l0 , for � xed l0 , calculated using the exact equations
(full lines), using the de Vries equation (upper dottedfact, in most chiral compounds the rotatory power scales

as l Õ 2
0 , a fact known experimentally since the early line), and using the expressions of eÄ (n) obtained by con-

sidering the power expansions up to ( p/l0 )m, for m 5 3research of Biot on rotatory power [8]. The dependence
of y/d on the size of the chiral molecules was � rst shown ( lower dotted line), m 5 5 (asterisks) , and m 5 (circles).

The coe� cient of the term scaling as ( p/l0 )5 for axialby Boltzmann in 1874 (see, for example, [9]) on the
basis of a simple molecular model. Therefore for chiral propagation is
crystals a scaling law of the type p/l2

0 is expected, and
actually found in most media. The p3 /l4

0 scaling law in eÄ (5) 5
1

32
n(e

m
1 n2 )e2

a . (20)
short pitch cholesterics is a further example of the unique
optical properties of the cholesteric phase, and appears

The full expansion with m 5 has been obtained as the
even more surprising in the framework of the approach

� rst order approximation of the perturbation approach
given here. In fact, equation (9) is obtained by expanding

described in § 3, by inserting the expression eÄ (n(0)
i

) given
the matrices G

m
in a power series of p/l0 . It is easily

by equation (8) in the Fresnel equation. The computations
shown that: (i) for real e(z) the contribution to the

are very simple because for axial propagation n(0)
1 5 n(0)

2 ,
optical activity only comes from the terms containing

since the unperturbed solutions are degenerate.
odd powers of ( p/l0 ), which are purely imaginary, and

The discontinuity in the full curve occurs at the left
(ii) for n parallel to the periodicity axis of 1D crystals

hand side of the Bragg band, where p becomes identical
the term linear in ( p/l0 ) is identically zero. These facts

to the internal wavelength l and the medium gives
explain the well known but unusual scaling law found

selective re� ection. The approximation with m 5 , and
in the N* phase for axial propagation, at least in the

the de Vries equation, give practically everywhere the
sense that this property is displayed by all short-pitch

same values, very close to the exact ones up to p nearly
1D crystals. The peculiarity of N* crystals is due to the

equal to l. The limits of validity of the homogeneous
fact that the term linear in ( p/l0 ) is absent for any

model are larger than expected, at least for the rotatory
direction of the light beam. This property appears very

power. The model fails only at the Bragg band, where
strange indeed if we consider the following facts: (i) the

no homogeneous model can be valid, as can be seen.
optical activity is related in general to helical shaped

The approximations with m 5 3 and m 5 5 are valid up
structures because any chiral object, for example a chiral

to p~ l/5 and p~ l/3, respectively.
molecular group, de� nes a left- or right-handed helix
which governs the optical activity [9]; (ii ) the cholesteric

5. Spatial dispersion and boundary conditionsphase is the simplest and the best known example of
The spatial dispersion, i.e. the explicit dependence ofperiodic helical structures. Despite these facts, the main

the eŒective dielectric tensor eÄ (n) on the wave vectorterm related to the optical activity of short pitch
of the plane waves, is a manifestation of the non-localcholesterics is lacking, and only smaller contributions
character of the interactions of matter with the electricscaling as the third or higher powers of p/l0 are present
� eld. The polarization induced by the electric � eld E atin the expression of eÄ (n).
any given point r depends on the value of E at r andIn the next section we consider some relevant
also at the neighbouring points. The simplest way toproblems related to the presence of the higher order
take into account the spatial dispersion is to developterms in the expression of eÄ (n). Here, we discuss the
E(r) as a Taylor series, and to de� ne a displacementlimits of the validity of equations (10), whose simplicity
vector D dependent explicitly on the space derivativesis due to the fact that two diŒerent types of approxi-
of E:mation have been made. Firstly, only the two-photon

scattering has been considered and secondly, the matrices D
a

5 e
ab

E
b
1 c

abc b
E

c
1 ¼ (21)

G
m

have been expanded in a power series of p/l0 , up to
( p/l0 )3. The cholesteric phase is an ideal tool to test For plane waves,

b
corresponds to ik0n

b
, since the space

dependence of E
c
(x1 , x2 , x3 ) is given by the factorthe validity limits of the expressions obtained, because
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595Optical properties of short pitch cholesterics

Figure 1. Optical rotatory power
y/d versus p, where both d and
p are measured in units l0 and
y is in degrees, for a medium
with e1 5 (1.75)2, e2 5 e3 5 (1.55)2.
The full line gives the exact
values, the other curves the
approximated ones (see text).
All the approximations consider
only terms linear in e2a ; (e1 Õ e2 )2.

exp(ik0n
b
x

b
). An approximation up to ( p/l0 )m corre- B 5 m0H and D is given by equation (21). In particular,

to eliminate the vector M from equation (22) it is suffi-sponds, therefore, to a Taylor expansion up to the
cient to add to P a vector P ¾ such that P ¾ / t 5 rot M,derivatives of order m. As far as we know, only the � rst
i.e. to reinterpret the magnetization current densityorder derivatives have been considered to date to de� ne
J

m 5 rot M as a polarization current density P ¾ / t.the optical properties of chiral media; the second order
These approaches, and in particular the most recentderivatives have been taken into account in cubic crystals,

one of Raab and Graham, are particularly suitable withsince they give a small optical anisotropy to such crystals
which to treat the contribution to spatial dispersion[10]. To take into account the optical activity of short
given by the chirality of the molecules, where the non-pitch cholesterics, we must consider at least the third
locality is restricted to the molecular size. For N*order derivatives, as discussed in the preceding sections.
crystals, this contribution is negligibly small, and theThe presence of derivative-dependent terms in the
non-locality has a diŒerent origin. In fact, the assumptionconstitutive equations gives problems which are not
that the optical properties of a N* crystal are fullysimple, in particular concerning the boundary con-
de� ned by a tensor � eld e(z) is, in a sense, an assumptionditions and the re� ection properties of the medium. Such
of locality, but a further and more important contri-problems have been solved, at least partially, only for
bution to the spatial dispersion comes from the inhomo-the � rst order derivatives by the Russian school [11, 12]
geneity of the medium on a scale intermediate betweenand more recently by Raab and Graham, on the
the molecular and the macroscopic one (mesoscopic scale).basis of a diŒerent set of constitutive equations [13].
The non-local character of our system is mainly dueMore precisely, those workers make use of a covariant
therefore to the mesoscopic inhomogeneity of the medium,multipole form for the vectors D and H, that are written
and more precisely to the multiple scattering among itsas
diŒerent parts. This gives a suitably averaged value of
eÄ (n), where the averaging must be performed, at least in
principle, over the entire crystal. These long range inter-

D
a

5 e0E
a
1 P

a
Õ

1

2
=

b
Q

ab
1 ¼ ;

H
a

5 m Õ 1
0 B

a
Õ M

a
1 ¼

(22)
actions greatly complicate the problems related to the
presence of the sample boundaries. The homogeneous

where P and M are the electric and magnetic dipole model considered here has been found by considering
densities, respectively, and Q is the electric quadrupole an unlimited periodic medium. Strictly speaking, in a
density. Such equations are easily transformed in the semi-in� nite medium the eŒective tensor eÄ (n) becomes

r-dependent, since a dependence on the distance of theLandau-type constitutive equations used here, where
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596 S. Ponti et al.

considered point from the boundary plane is expected. for inhomogeneous media whose local properties are
still correlated over distances large with respect to theThe evaluation of the macroscopic dielectric tensor gives

the same problems found for the evaluation of any other wavelength of light. In fact, the optical properties of
homogeneous models cannot depend on w0 .macroscopic quantity, as for instance the Frank elastic

constants, in the presence of long range interactions. However, strong discrepancies between the actual
periodic medium and its homogeneous model are foundThe presence of a boundary layer having a thickness

of the order of the pitch has been shown [4] by the only if we consider small eŒects that are, in general,
of little macroscopic interest and not easily detectedoptical properties of short pitch smectic C* phases. In

the same paper, even more important optical eŒects are experimentally. This statement is well illustrated by
� gure 3, which gives the optical rotation and the rotatoryseen in samples between parallel planes orthogonal to

the helix axis. Such eŒects are also present in N* samples. power of a � nite sample as a function of its thickness.
The full line refers to the macroscopic model in theThey are shown in � gure 2, which gives the depolarized

transmittance T (w0 ) and re� ectance R(w0 ) of a sample ( p/l0 )3 approximation, and the dotted lines to the exact
values computed for three diŒerent values of w0 . Largewith thickness d 5 l0 , as a function of the angle w0

between the boundary direction of the local optic axis discrepancies between the diŒerent curves are found only
for a very small optical rotation y, of the order of 0.1and the polarization plane of normally incident light.

For p l0 the dependence of the re� ectance on w0 is degree or lower. It must be noted that the curves for the
homogeneous model have been obtained by making useobvious, because a w0 change has the same eŒect as the

rotation of the optic axis of a uniaxial homogeneous of ‘wrong’ boundary conditions, obtained by assuming
the tangential continuity of the vectors E and H, orcrystal. Unexpectedly, this dependence is still very strong

for p-values as small as l0 /10, where the homogeneous equivalently the normal continuity of the Poyting vector.
It is in fact well known that such conditions are notmodel is expected to be valid. Despite the fact that e(z)

is changing rapidly along z, T and R strongly depend consistent with the Landau-type constitutive equations
(21), because the conservation of the energy � ux at theon the boundary value of e(z). The � gure gives an

impressive demonstration of the di� culty in de� ning boundary plane requires the addition of a new small
term to E Ö H, to obtain a self-consistent set of bulkhomogeneous models for crystals, and more generally

Figure 2. Depolarized transmittance and re� ectance versus w0 , de� ned as intensity ratios, with input linear polarization and
orthogonal output polarization, for a sample of thickness d 5 l0 and pitch p 5 0.1l0 between two glasses with refractive index
ng 5 1.5. The other parameter values are the same as in � gure 1. The dotted lines refer to the periodic medium, the full line to
its homogeneous model in the ( p/l0 )3 approximation, which gives a re� ectance equal to 1.8 Ö 10 Õ 10, such that the full line in
the left hand � gure is practically coincident with the horizontal axis.
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597Optical properties of short pitch cholesterics

Figure 3. Optical rotation /d (right-
hand � gure) versus d/0 . The
other parameter values are the
same as in � gure 2. The dotted
lines refer to the periodic
medium with w0 5 0 ß , 60 ß , 120 ß ,
the full lines to the homo-
geneous model in the ( p/l0 )3
approximation.
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and boundary relations for chiral media. The additional main contribution to the optical activity of any other
chiral medium is given by a term scaling as ( p/l0 ).term has been calculated by Fedorov [12] for the simple

case where the bulk equations contain only � rst order The terms with even m-values are of minor interest,
because they only give a small correction to the linearderivatives. The search for the corresponding term in

the presence of higher order derivatives is still an open birefringence.
The limits of validity of the homogeneous model havequestion. Despite its omission, the homogeneous model

gives, in general, very good results. In fact it must be been carefully tested, at least for what in� uences the
rotatory power for light propagating along the helixnoted that the discrepancies shown by � gures 2 and 3

are not due to the omission of the above term, but to a axis. Such limits depend on the number of terms used
to de� ne eÄ (n). If we consider only terms with m < 3, thecompletely diŒerent and stronger eŒect, related to the

role of the angle w0 . model is valid up to p l/5, there l is the internal
wavelength. The term with m 5 5 extends its validity
up to p l/3. The full expression of eÄ (n), correspond-
ing to m 5 , is still reasonably simple and is valid up6. Conclusions

The Bloch wave method, developed recently to explore to p nearly equal to l, i.e. up to the p-value that gives
the Bragg re� ection band. For higher p-values thehomogeneous models for crystals having periods short

with respect to the wavelength of light, has been applied homogeneous medium loses any meaning, as is evident.
A great emphasis is given to some problems con-to short pitch N* liquid crystals. Very simple expressions

are found for the eŒective permittivity eÄ (n), that explicitly cerning basic optics related to the presence of multiple
roots for the Fresnel equation and to the presence ofdepend on the normalized wave vector n of the plane

waves propagating in the medium. The simplicity of the boundary eŒects. The homogeneous model allows, for
any given direction, many plane wave solutions withequations giving eÄ (n) is a consequence of the simplicity

of the cholesteric structure, whose optical properties are diŒerent eŒective refractive indices. However only two
solutions are physically meaningful, and can be foundfully de� ned by a permittivity function e(r) that only

contains the Fourier components of order Õ 1, 0, 1 1. by a simple perturbation approach. The problems related
to the presence of boundary eŒects have been discussedThe most interesting optical property of short pitch

cholesterics is related to their optical activity, that is but not fully resolved. The great interest of a term
scaling as ( p/l0 )3 poses in fact not trivial problems forgiven by terms of eÄ (n) scaling as ( p/l0 )m, with m 5 3, 5, 7, …

This property constitutes a further example of the unique the de� nition of a self-consistent set of boundary and
bulk equations, and could stimulate further research.optical properties of the cholesteric phase. In fact the

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
0
9
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



598 Optical properties of short pitch cholesterics

With reference to the aims declared in the introduction , the boundary eŒects, the problems solved here
appear not to be as important as the new onesthe results obtained can be summarized as follows:
highlighted.

(i) The Bloch wave method seems very e� cient,
since it can generate many approximations for References
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